All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dual polymer engineering enables high-performance 3D printed Zn-organic battery cathodes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU147071" target="_blank" >RIV/00216305:26620/22:PU147071 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2352940722001500?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352940722001500?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apmt.2022.101515" target="_blank" >10.1016/j.apmt.2022.101515</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dual polymer engineering enables high-performance 3D printed Zn-organic battery cathodes

  • Original language description

    Fused deposition modeling (FDM) 3D-printed one-dimensional (1D) carbon materials show great potential as skeletons for newly emerged aqueous Zn-organic batteries due to their well-entangled conductive networks and design flexibility in on-demand fabrication. However, (i) the insulating character of commonly used thermoplastic polymers in FDM 3D printing and (ii) the incompatibility between organic cathodes and cost-efficient aqueous mild electrolytes present a stumbling block for the current development of FDM 3D-printed Zn-organic batteries. Targeting these two aspects, this work proposes a dual-polymer-engineered cathode for high-performance Zn2+ storage. The engineering consists of (i) a crystallinity engineering of insulating poly(lactic acid) (PLA) in 3D-printed carbon frameworks to confine the nanocarbon accommodation space to form a more compact conductive network, and (ii) a protonation engineering of polyaniline (PANI) by in situ introduction of polyacrylic acid (PAA) during electrodeposition process to construct an internal proton reservoir for reversible redox reactions of PANI. Such dual-polymer-engineered cathode (3D@PANI-PAA) presents a reversible capacity of 214.6 mAh g−1 at 0.4 A g−1, good rate performance (117.2 mAh g−1 at 3.2 A g−1), and much improved cycling stability over 1000 cycles (78.1% capacity retention). This combined approach delivers new concepts to construct reliable aqueous Zn-organic batteries and enlarges the FDM 3D printing for electrochemical energy storage applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Materials Today

  • ISSN

    2352-9407

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    „101515“-„“

  • UT code for WoS article

    000976602100001

  • EID of the result in the Scopus database

    2-s2.0-85131098124