All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tailoring interface epitaxy and magnetism in La1-xSrxMnO3/SrTiO3 heterostructures via temperature-driven defect engineering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU147308" target="_blank" >RIV/00216305:26620/22:PU147308 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/10.1063/5.0095406" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0095406</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0095406" target="_blank" >10.1063/5.0095406</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tailoring interface epitaxy and magnetism in La1-xSrxMnO3/SrTiO3 heterostructures via temperature-driven defect engineering

  • Original language description

    Defect engineering of La1-xSrxMnO3 (LSMO)-a strongly correlated oxide displaying half metallicity and ferromagnetism above room temperature-has been the focus of a long-standing quest aimed at the exploitation of this material as a functional building block for memory storage and spintronic applications. Here, we discuss the correlation between structural defects and magnetism in La1-xSrxMnO3/SrTiO3 (LSMO/STO) epitaxial heterostructures as a function of growth temperature and post-deposition annealing. Upon increasing the growth temperature from 500 to 700 degrees C at a fixed oxygen partial pressure of 0.007 mbar, the sputter-deposited epitaxial LSMO films experience a progressive increase in Curie temperature T-c from 110 to 270 K and saturation magnetization M-s from 1.4 to 3.3 mu(B)/u.c. owing to a reduction in oxygen deficiencies. Concurrently, however, growth temperatures above 600 degrees C trigger the formation of off-stoichiometric, dendritic-like SrMoOx islands at the film/substrate interface as a possible aftermath of temperature-driven diffusion of impurities from the STO substrate. Notably, although the interfacial spurious islands cause an increase in sample surface roughness, the heterostructure still preserves high-quality epitaxy. In general, the best compromise in terms of both structural and magnetic properties, comprising high-quality epitaxy, atomically flat surface, and robust ferromagnetism above room temperature, is obtained for LSMO films grown at a relatively low temperature of about 500-540 degrees C followed by a post-deposition annealing treatment at 900 degrees C for 1 h in air. Our study compares effective routes based on temperature-controlled defect engineering to finely tailor the complex interplay between microstructure and magnetism in LSMO thin films. (C) 2022 Author(s).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/LM2018110" target="_blank" >LM2018110: CzechNanoLab research infrastructure</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Applied Physics

  • ISSN

    0021-8979

  • e-ISSN

    1089-7550

  • Volume of the periodical

    132

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    „“-„“

  • UT code for WoS article

    000874530300002

  • EID of the result in the Scopus database

    2-s2.0-85138708045