All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Self-organization phenomena in cold atmospheric pressure plasma slit jet

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU147333" target="_blank" >RIV/00216305:26620/22:PU147333 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/22:00128318

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/acab82" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/acab82</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/acab82" target="_blank" >10.1088/1361-6595/acab82</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Self-organization phenomena in cold atmospheric pressure plasma slit jet

  • Original language description

    The radio frequency plasma slit jet, which produces 150 mm wide streaming plasma outside the jet body, exhibits exciting self-organization phenomena that resemble the self-organized patterns of dielectric barrier discharge (DBD) filaments. Similarly, as in DBD, the filaments are surrounded by an inhibition zone that does not allow two filaments to come closer to each other. With fast camera imaging, we observed the filamentary character of the discharge in all the studied gas feeds (Ar, Ar/N-2, and Ar/O-2). Still, the visual appearance of the filaments in the plasma and their interaction with a dielectric surface depended significantly on the gas feed. As the breakdown voltage in pure Ar is relatively low compared to the applied one, new filaments form frequently. Such newly created filaments disrupted the characteristic inter-filament distance, forcing the system to rearrange. The frequent ignition and decay processes in Ar led to short filament lifetimes (0.020-0.035 s) and their high jitter speed (0.9-1.7 m s(-1)), as determined with an image processing custom code based on Gwyddion libraries. The number of filaments was lower in the Ar/O-2 and Ar/N-2 mixtures. It was attributed to a loss of energy in the excitation of rotational and vibrational levels and oxygen electronegativity. Since the probability of low-current side discharges transitioning into the full plasma filaments was limited in these gas mixtures, the self-organized pattern was seldom disrupted, leading to lesser movement and longer lifetimes. Unlike in Ar or Ar/O-2, the constricted filaments in Ar/N-2 were surrounded by diffuse plasma plumes, likely connected to the presence of long-lived nitrogen species. We demonstrated in the polypropylene treatment that the self-organization phenomena affected the treatment uniformity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plasma Sources Science and Technology

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000907216600001

  • EID of the result in the Scopus database

    2-s2.0-85145878511