All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Entangling free electrons and optical excitations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU147473" target="_blank" >RIV/00216305:26620/22:PU147473 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.science.org/doi/10.1126/sciadv.abo7853" target="_blank" >https://www.science.org/doi/10.1126/sciadv.abo7853</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1126/sciadv.abo7853" target="_blank" >10.1126/sciadv.abo7853</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Entangling free electrons and optical excitations

  • Original language description

    The inelastic interaction between flying particles and optical nanocavities gives rise to entangled states in which some excitations of the latter are paired with momentum changes in the former. Specifically, free-electron entanglement with nanocavity modes opens appealing opportunities associated with the strong interaction capabilities of the electrons. However, the achievable degree of entanglement is currently limited by the lack of control over the resulting state mixtures. Here, we propose a scheme to generate pure entanglement between designated optical-cavity excitations and separable free-electron states. We shape the electron wave function profile to select the accessible cavity modes and simultaneously associate them with targeted electron scattering directions. This concept is exemplified through theoretical calculations of free-electron entanglement with degenerate and nondegenerate plasmon modes in silver nanoparticles and atomic vibrations in an inorganic molecule. The generated entanglement can be further propagated through its electron component to extend quantum interactions beyond existing protocols.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    O - Projekt operacniho programu

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science Advances

  • ISSN

    2375-2548

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    47

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000968162100010

  • EID of the result in the Scopus database

    2-s2.0-85142940512