Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU148463" target="_blank" >RIV/00216305:26620/23:PU148463 - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/2515-7639/acce6f" target="_blank" >https://iopscience.iop.org/article/10.1088/2515-7639/acce6f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/2515-7639/acce6f" target="_blank" >10.1088/2515-7639/acce6f</a>
Alternative languages
Result language
angličtina
Original language name
Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh
Original language description
Magnetic phase transition materials are relevant building blocks for developing green technologies such as magnetocaloric devices for solid-state refrigeration. Their integration into applications requires a good understanding and controllability of their properties at the micro- and nanoscale. Here, we present an optical microscopy study of the phase domains in FeRh across its antiferromagnetic-ferromagnetic phase transition. By tracking the phase-dependent optical reflectivity, we establish that phase domains have typical sizes of a few microns for relatively thick epitaxial films (200 nm), thus enabling visualization of domain nucleation, growth, and percolation processes in great detail. Phase domain growth preferentially occurs along the principal crystallographic axes of FeRh, which is a consequence of the elastic adaptation to both the substrate-induced stress and laterally heterogeneous strain distributions arising from the different unit cell volumes of the two coexisting phases. Furthermore, we demonstrate a magnetic-field-controlled directional growth of phase domains during both heating and cooling, which is predominantly linked to the local effect of magnetic dipolar fields created by the alignment of magnetic moments in the emerging (disappearing) FM phase fraction during heating (cooling). These findings highlight the importance of the magnetoelastic character of phase domains for enabling the local control of micro- and nanoscale phase separation patterns using magnetic fields or elastic stresses.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Quality internal grants at BUT</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics: Materials
ISSN
2515-7639
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
1-15
UT code for WoS article
000985162700001
EID of the result in the Scopus database
2-s2.0-85159699840