Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU150071" target="_blank" >RIV/00216305:26620/23:PU150071 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/23:10252772
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0926337323002758?via%3Dihub" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0926337323002758?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apcatb.2023.122632" target="_blank" >10.1016/j.apcatb.2023.122632</a>
Alternative languages
Result language
angličtina
Original language name
Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia
Original language description
Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to remedying the environmental pollution from nitrate, and simultaneously a sustainable alternative to traditional Haber-Bosch process especially for decentralized ammonia production. Here, we firstly explore the electrocatalytic activity of two 3D printed carbon frameworks consisting of 0-dimentional (0D) carbon black and 1-dimentional (1D) carbon nanotubes towards cost-efficient electrocatalysts for NO3RR. Different from the electrocatalytic inert properties of 0D carbon framework, 1D carbon framework exhibits the electrocatalytic activity for NO3RR with a Faradaic efficiency of more than 50% at - 1.21 V vs. RHE. Control experiments suggest that such activity originates from the synergistic electrocatalytic contributions between intrinsic surface features of carbon nanotubes and metallic impurities. Since the content and distribution of these metallic impurities are unpredictable, an ultrathin deposit of electrocatalytic manganese oxides is further deposited by atomic layer deposition on 1D carbon framework to ensure well defined surfaces for effective NO3RR. The proposed strategy by integrating 3D printing of conductive carbon framework with atomic layer deposition of an electrocatalytic layer provides a feasible electrode fabrication for electrochemical NO3RR and shows a promising prospect in the electrocatalytic field.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
<a href="/en/project/GX19-26896X" target="_blank" >GX19-26896X: 2D Nanomaterials Electrochemistry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Catalysis B: Environmental
ISSN
0926-3373
e-ISSN
1873-3883
Volume of the periodical
330
Issue of the periodical within the volume
122632
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
„“-„“
UT code for WoS article
001054860700001
EID of the result in the Scopus database
2-s2.0-85150917482