All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Engineering 3D-printed carbon structures with atomic layer deposition coatings as photoelectrocatalysts for water splitting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU150401" target="_blank" >RIV/00216305:26620/23:PU150401 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta04460b" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta04460b</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d3ta04460b" target="_blank" >10.1039/d3ta04460b</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Engineering 3D-printed carbon structures with atomic layer deposition coatings as photoelectrocatalysts for water splitting

  • Original language description

    Three-dimensional (3D)-printing has evolved as a popular technique for producing customized parts and devices. 3D conductive structures made of metals or carbon-based materials are highly preferable in the field of electrochemistry. Compared to their metal counterparts, 3D carbon structures printed by the filament extrusion technique are readily available to end users, with the advantages of reduced electrode mass and broad compatibility with harsh environments that might be required for electrochemical applications. To elevate the applicability of 3D carbon electrodes in sensing, catalysis, energy storage, etc., surface or chemical modifications and coating of functional layers are essential. Atomic layer deposition (ALD) is an ideal deposition tool for creating coatings on geometrically complicated structures, yet the surface chemistry of the inert 3D carbon electrodes critically affects the initial growth. We performed a straightforward surface treatment, also known as 'activation', to improve the surface wettability and promote the ALD of TiO2, SiO2, and Al2O3 at low deposition temperatures. We applied the ALD coated electrodes for light-enhanced water splitting hydrogen and oxygen evolution reactions (HER, OER). In addition, we showed that 3D electrodes can be prepared in different geometrical shapes and sizes, as their metal counterparts. This work presents the versatility of ALD coatings on 3D carbon platforms, tunable for many other applications. 3D-printed carbon structures are lightweight, conductive, and durable in harsh conditions. A straightforward surface treatment allows for functional ALD coatings, enhancing light-driven hydrogen and oxygen evolution reactions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

  • Continuities

    O - Projekt operacniho programu

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Materials Chemistry A

  • ISSN

    2050-7488

  • e-ISSN

    2050-7496

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    396-404

  • UT code for WoS article

    001113024300001

  • EID of the result in the Scopus database

    2-s2.0-85179154632