Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU150322" target="_blank" >RIV/00216305:26620/24:PU150322 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/24:00135791
Result on the web
<a href="https://www.nature.com/articles/s41566-023-01368-w" target="_blank" >https://www.nature.com/articles/s41566-023-01368-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41566-023-01368-w" target="_blank" >10.1038/s41566-023-01368-w</a>
Alternative languages
Result language
angličtina
Original language name
Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells
Original language description
Maintaining and modulating mechanical anisotropy is essential for biological processes. However, how this is achieved at the microscopic scale in living soft matter is not always clear. Although Brillouin light scattering (BLS) spectroscopy can probe the mechanical properties of materials, spatiotemporal mapping of mechanical anisotropies in living matter with BLS microscopy has been complicated by the need for sequential measurements with tilted excitation and detection angles. Here we introduce Brillouin light scattering anisotropy microscopy (BLAM) for mapping high-frequency viscoelastic anisotropy inside living cells. BLAM employs a radial virtually imaged phased array that enables the collection of angle-resolved dispersion in a single shot, thus enabling us to probe phonon modes in living matter along different directions simultaneously. We demonstrate a precision of 10 MHz in the determination of the Brillouin frequency shift, at a spatial resolution of 2 µm. Following proof-of-principle experiments on muscle myofibres, we apply BLAM to the study of two fundamental biological processes. In plant cell walls, we observe a switch from anisotropic to isotropic wall properties that may lead to asymmetric growth. In mammalian cell nuclei, we uncover a spatiotemporally oscillating elastic anisotropy correlated to chromatin condensation. Our results highlight the role that high-frequency mechanics can play in the regulation of diverse fundamental processes in biological systems. We expect BLAM to find diverse applications in biomedical imaging and material characterization.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10306 - Optics (including laser optics and quantum optics)
Result continuities
Project
<a href="/en/project/LM2023051" target="_blank" >LM2023051: Research infrastructure CzechNanoLab</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Photonics
ISSN
1749-4885
e-ISSN
1749-4893
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
276-285
UT code for WoS article
001145338600002
EID of the result in the Scopus database
2-s2.0-85182452976