PMSM fault detection using unsupervised learning methods based on conditional convolution autoencoder
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU154792" target="_blank" >RIV/00216305:26620/24:PU154792 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10905074" target="_blank" >https://ieeexplore.ieee.org/document/10905074</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IECON55916.2024.10905074" target="_blank" >10.1109/IECON55916.2024.10905074</a>
Alternative languages
Result language
angličtina
Original language name
PMSM fault detection using unsupervised learning methods based on conditional convolution autoencoder
Original language description
The challenges of fault detection and condition monitoring in powertrain systems have become increasingly prominent, particularly with the widespread adoption of failoperational systems. These systems are pivotal in diverse sectors, including the robotics, automotive industry, and various industrial applications. A critical attribute of such systems lies in their capability to identify non-standard behaviour of the system. This study describes a inovative conditional convolutional autoencoder-based fault detection algorithm for the permanent magnet synchronous motor. The study compares a train process of conditional convolutional autoencoder with a classical convolutional autoencoder. The presented autoencoder structure was designed to be implementable into the target microcontroller AURIX TC397 while providing sufficient recognition capabilities of the interturn short-circuit. Autoencoders are trained on data obtained during healthy motor operation and subsequently used to detect interturn short-circuit faults on the experimental dual three-phase permanent magnet synchronous motor with the possibility of emulating an interturn short-circuit fault. The paper provides insights into the achieved autoencoder inference times and the sensitivity in detecting the fault.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IECON 2024- 50th Annual Conference of the IEEE Industrial Electronics Society
ISBN
978-1-6654-6454-3
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
IEEE
Place of publication
Chicago, IL, USA
Event location
Chicago
Event date
Nov 3, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—