Study of the dielectric properties, relaxation mechanisms and electrical conduction mechanisms of epoxy/ α-Iron oxide nanocomposites
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F25%3APU156414" target="_blank" >RIV/00216305:26620/25:PU156414 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0925838825013647?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925838825013647?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jallcom.2025.179806" target="_blank" >10.1016/j.jallcom.2025.179806</a>
Alternative languages
Result language
angličtina
Original language name
Study of the dielectric properties, relaxation mechanisms and electrical conduction mechanisms of epoxy/ α-Iron oxide nanocomposites
Original language description
In this study, the dielectric properties, relaxation mechanisms, and electrical conduction mechanisms of epoxy resin-based nanocomposites were enhanced using ferric oxide (alpha - Fe2O3) nanoparticles. Composites containing 3-12 wt% nanoparticles were analyzed for relative permittivity, impedance, modulus, alternating conductivity, activation energy, and hopping energy across a temperature range of 30-150 degrees C and frequencies of 10- 2- 106 Hz using dielectric relaxation spectroscopy. Nanoparticle dispersion and structural formation within the epoxy matrix were confirmed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and X-ray diffraction. The results revealed that the electrical permittivity and impedance increased with temperature, whereas the conductivity, modulus, and activation energy decreased. The relaxation behavior was analyzed using the Havriliak-Negami model via WinFit software. Distinct conduction mechanisms were observed at lower filler concentrations (3-6 wt%). %) exhibited modified Non-Overlapping Small Polaron Tunneling and modified Correlated Barrier Hopping, whereas higher concentrations (9-12 wt%) transitioned to Quantum Mechanical Tunneling and modified Correlated Barrier Hopping. The results showed that the relative permittivity of the epoxy samples increased with increasing temperature. Specifically, the relative permittivity of the epoxy/ 3 wt% sample at room temperature was 3 and it increased to 12 at 150 degrees C. Additionally, a slight increase in AC conductivity was observed owing to thermal activation, with AC conductivity values increasing from 10- 8 to10-7 S/cm within the specified temperature range for the epoxy/ 12 wt% sample. Furthermore, a gradual decrease in impedance was noted as the temperature increased, with values decreasing from 1011 to109 ohm for the epoxy/ 3 wt% sample. Analysis of the Cole-Cole plots revealed a variation in the relaxation time that depended on the filler concentra
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10400 - Chemical sciences
Result continuities
Project
<a href="/en/project/LM2023051" target="_blank" >LM2023051: Research infrastructure CzechNanoLab</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2025
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN
0925-8388
e-ISSN
1873-4669
Volume of the periodical
1022
Issue of the periodical within the volume
179806
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
„“-„“
UT code for WoS article
001457982300001
EID of the result in the Scopus database
2-s2.0-105000947568