En Route for the Calculus of Variations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F01801376%3A_____%2F19%3AN0000001" target="_blank" >RIV/01801376:_____/19:N0000001 - isvavai.cz</a>
Result on the web
<a href="http://eiris.it/ojs/index.php/ratiomathematica/issue/view/36-2019" target="_blank" >http://eiris.it/ojs/index.php/ratiomathematica/issue/view/36-2019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23755/rm.v36i1.467" target="_blank" >10.23755/rm.v36i1.467</a>
Alternative languages
Result language
angličtina
Original language name
En Route for the Calculus of Variations
Original language description
Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. An optimal control is an extension of the calculus of variations. It is a mathematical optimization method for deriving control policies. The calculus of variations is concerned with the extrema of functionals. The different approaches tried out in its solution may be considered, in a more or less direct way, as the starting point for new theories. While the true “mathematical” demonstration involves what we now call the calculus of variations, a theory for which Euler and then Lagrange established the foundations, the solution which Johann Bernoulli originally produced, obtained with the help analogy with the law of refraction on optics, was empirical. A similar analogy between optics and mechanics reappears when Hamilton applied the principle of least action in mechanics which Maupertuis justified in the first instance, on the basis of the laws of optics.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
50200 - Economics and Business
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications
ISSN
1592-7415
e-ISSN
2282-8214
Volume of the periodical
36
Issue of the periodical within the volume
1
Country of publishing house
IT - ITALY
Number of pages
10
Pages from-to
69 - 78
UT code for WoS article
—
EID of the result in the Scopus database
—