All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F03892620%3A_____%2F17%3AN0000005" target="_blank" >RIV/03892620:_____/17:N0000005 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14330/17:00094366

  • Result on the web

    <a href="http://www.aclweb.org/anthology/W17-2611" target="_blank" >http://www.aclweb.org/anthology/W17-2611</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/W17-2611" target="_blank" >10.18653/v1/W17-2611</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines

  • Original language description

    Vector representations and vector space modeling (VSM) play a central role in modern machine learning. We propose a novel approach to ‘vector similarity searching’ over dense semantic representations of words and documents that can be deployed on top of traditional inverted-index-based fulltext engines, taking advantage of their robustness, stability, scalability and ubiquity. We show that this approach allows the indexing and querying of dense vectors in text domains. This opens up exciting avenues for major efficiency gains, along with simpler deployment, scaling and monitoring. The end result is a fast and scalable vector database with a tunable trade-off between vector search performance and quality, backed by a standard fulltext engine such as Elasticsearch. We empirically demonstrate its querying performance and quality by applying this solution to the task of semantic searching over a dense vector representation of the entire English Wikipedia.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/TD03000295" target="_blank" >TD03000295: Intelligent software for semantic text search</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2nd Workshop on Representation Learning for NLP

  • ISBN

    978-1-945626-62-3

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    81-90

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Vancouver, Canada

  • Event location

    Vancouver, Canada

  • Event date

    Jan 1, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article