All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparative analysis of popular cnn based deep learning models for tree trunk detection in orchards

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25271121%3A_____%2F24%3AN0000129" target="_blank" >RIV/25271121:_____/24:N0000129 - isvavai.cz</a>

  • Result on the web

    <a href="http://nnw.cz/doi/2024/NNW.2024.34.014.pdf" target="_blank" >http://nnw.cz/doi/2024/NNW.2024.34.014.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/NNW.2024.34.014" target="_blank" >10.14311/NNW.2024.34.014</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparative analysis of popular cnn based deep learning models for tree trunk detection in orchards

  • Original language description

    This study compares machine vision deep learning models based on convolutional neural networks to detect tree trunks in orchards from camera images, with a primary focus on apple trees. Two distinct datasets are used, one original with apple trees and another publicly available featuring vineyard trunks. Multiple deep learning models are tested and compared in order to evaluate their efficacy in tree trunk detection. Research not only provides insight into the performance of various models but also serves as a valuable benchmark for assessing achievable results in orchard-based machine vision applications. The findings contribute to the field’s understanding of tree trunk detection, facilitating advancements in agricultural automation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40500 - Other agricultural sciences

Result continuities

  • Project

    <a href="/en/project/QK21010170" target="_blank" >QK21010170: New orchard concept using technology 4.0</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Network World

  • ISSN

    2336-4335

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    15

  • Pages from-to

    263-277

  • UT code for WoS article

    001419989000001

  • EID of the result in the Scopus database