All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Performance Analysis of Convolutional Neural Networks with Different Window Functions for Automatic Modulation Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25547526%3A_____%2F22%3AN0000002" target="_blank" >RIV/25547526:_____/22:N0000002 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9952750" target="_blank" >https://ieeexplore.ieee.org/document/9952750</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICTC55196.2022.9952750" target="_blank" >10.1109/ICTC55196.2022.9952750</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Performance Analysis of Convolutional Neural Networks with Different Window Functions for Automatic Modulation Classification

  • Original language description

    Automatic modulation classification is one of the main tasks for developing information security and radio signal surveillance systems. It is also becoming increasingly significant for spectrum monitoring, management, and secure communications. Recently, deep learning models have been widely applied in many fields due to their outstanding feature extraction and classification accuracy. In this paper, the automatic modulation classification performance of several deep convolutional neural networks (CNN) is analyzed on the Fast Fourier Transform (FFT) based signal spectrum and the Short Time Fourier Transform (STFT) based signal spectrogram. By using ResNet18 and MobileNet cross-combined with FFT and STFT input data, the simulation shows that the STFT data provides a higher AMC accuracy than that of FFT data. On the same STFT data, the ResNet18 model outperforms three other models (SqueezeNet, GoogleNet, and MobileNet) in classifying 26 modulation types under the influence of five levels of fading noise with SNRs from −20 dB to +18 dB. Besides, the impact of different window functions in STFT is also investigated. Numerical results indicate that the considered window functions cause an insignificant difference in the AMC accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/TM02000035" target="_blank" >TM02000035: NEO classification of signals (NEOCLASSIG) for radio surveillance systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.

Data specific for result type

  • Article name in the collection

    Performance Analysis of Convolutional Neural Networks with Different Window Functions for Automatic Modulation Classification

  • ISBN

    978-1-6654-9940-8

  • ISSN

    2162-1233

  • e-ISSN

    2162-1241

  • Number of pages

    5

  • Pages from-to

    153 - 157

  • Publisher name

    IEEE

  • Place of publication

    Jeju Island, Republic of Korea

  • Event location

    Jeju Island, Republic of Korea

  • Event date

    Jan 1, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article