All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High-Temperature Corrosion of Nickel-Based Coatings for Biomass Boilers in Chlorine-Containing Atmosphere

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25797000%3A_____%2F21%3AN0000051" target="_blank" >RIV/25797000:_____/21:N0000051 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2079-6412/12/2/116/htm" target="_blank" >https://www.mdpi.com/2079-6412/12/2/116/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/coatings12020116" target="_blank" >10.3390/coatings12020116</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High-Temperature Corrosion of Nickel-Based Coatings for Biomass Boilers in Chlorine-Containing Atmosphere

  • Original language description

    As there is a strong pressure in the EU to reduce CO2 emissions and overall fossil fuel consumption in the energy sector, many boilers are burning biomass instead of traditional fuels (coal, natural gas, oil, etc.). This is mainly due to the EU 2030 energy strategy, which commits Member States to reduce fossil fuel emissions by at least 40% (compared to the 1990 level) and to use at least 32% of renewable energy. The combustion of biomass containing aggressive elements such as chlorine or sulfur causes serious damage to various boiler components, with negative impacts such as reduced boiler lifetime, increased investments and maintenance costs, reduced availability, and others. These problems occur mainly in plants/boilers designed to burn coal and redesigned to burn biomass (straw, wood chips, wood pellets, etc.). In this paper, the corrosion resistance of heat coatings determined in long-term laboratory tests in an environment specifically corresponding to biomass flue gas is presented. These results can be used to design a suitable modification of existing coal boilers using conventional materials. The aim was to compare three completely different technologies currently available on local markets for the preparation of these coatings—thin wire arc spray (TWAS), high-velocity oxygen fuel (HVOF), and water-stabilized plasma. These coatings were compared with the base material of the boiler tubes—low alloyed steel 16Mo3 and high alloyed austenitic stainless steel AISI 310 as a more expensive option for retrofit. After 5000 h of exposure in an environment containing HCl and SO2, no cracks or structural defects were observed in any of the coatings, and the substrate material showed no signs of oxidation. All the tested coatings had higher corrosion resistance than the 16Mo3 material, and some of them presented a corrosion behavior close to that of the high alloy AISI 310 steel. Structurally and corrosion-wise, the thermally sprayed coating prepared by HVOF technology was the best of all tested materials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    <a href="/en/project/TK01030089" target="_blank" >TK01030089: Resistance and degradation of alloys in high temperature gaseous medium</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Coatings

  • ISSN

    2079-6412

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000767192800001

  • EID of the result in the Scopus database

    2-s2.0-85124280522