Monitoring of concrete structures by means of composite tensometers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26232511%3A_____%2F16%3AN0000073" target="_blank" >RIV/26232511:_____/16:N0000073 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Monitoring of concrete structures by means of composite tensometers
Original language description
At the end of the 20th century requirements on using electrical properties of building materials emerged for application in heating of trafficable surfaces, grounding of electrostatic charges in floors, shielding of electro-magnetic fields and diagnosis of concrete structure state in the course of time. For this reason, it was necessary to design special fibre-cement elements able to transfer any mechanical impulse to an electrically-measured signal detected as a change in electrical resistance with computer outputs. Regarding previous research studies, it was concluded that special fibre-cement composites are able to conduct electric current under specific conditions. This property is ensured by using of various kinds of carbon materials. Though carbon fibres are less conductive than metal fibres, composites with carbon fibres were evaluated as better current conductors than the composites with metal fibres. By means of various kinds of carbon particles and fibres it is possible to design cement composites with an ability to monitor changes in electrical conductivity of concretes. The designed composites are assembled with conductive wires and connected with a special electronic equipment for monitoring of changes in alternate voltage passing through the tensometer within mechanical loading of a concrete element in which the composite is integrated. The tensometers are placed preferably into parts of the concrete elements subjected to compression, such as simple reinforced columns or upper parts of longitudinal beams. Several tests of repeated loading and simultaneous monitoring of vertical as well as horizontal prefabricated concrete elements were carried out and evaluated, which is demonstrated on examples from a testing room.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
JN - Civil engineering
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/FR-TI3%2F485" target="_blank" >FR-TI3/485: Engineering structure state monitoring by the means of electrically conductive elements with modified cement matrix</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů