All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Role of Biochar Co-Pyrolyzed with Sawdust and Zeolite on Soil Microbiological and Physicochemical Attributes, Crop Agronomic, and Ecophysiological Performance

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26296080%3A_____%2F23%3AN0000037" target="_blank" >RIV/26296080:_____/23:N0000037 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/23:10471249 RIV/26788462:_____/23:N0000017 RIV/62156489:43210/23:43923919

  • Result on the web

    <a href="https://doi.org/10.1007/s42729-023-01428-8" target="_blank" >https://doi.org/10.1007/s42729-023-01428-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s42729-023-01428-8" target="_blank" >10.1007/s42729-023-01428-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Role of Biochar Co-Pyrolyzed with Sawdust and Zeolite on Soil Microbiological and Physicochemical Attributes, Crop Agronomic, and Ecophysiological Performance

  • Original language description

    The overuse of synthetic fertilizers has been associated with negative environmental consequences. The use of biochar in this regard has been recommended as a win–win strategy. However, our understanding on the comparative influences of biochar prepared from various feedstocks mixed with other bulking agents on soil health and crop performance remained limited. Therefore, in the present study, three types of biochar produced from sewage sludge, food, and agricultural waste were analyzed and compared for their effects on soil enzymes (dehydrogenase, DHA; β-glucosidase, GLU; phosphatase, PHOS; urease, URE; N-acetyl-β-D-glucosaminidase, NAG; and arylsulphatase, ARS), soil basal, as well as substrate-induced respirations and plant growth and physiology characters. The results revealed that food waste-derived biochar co-pyrolyzed with zeolite and/or sawdust was more effective in improving soil physicochemical properties and carbon and phosphorous cycling enzyme (DHA, GLU, and PHOS) activities in addition to soil basal respiration. While the influence of wastewater sewage sludge-derived biochar was more pronounced on urease, N-acetyl-β-D-glucosaminidase, and arylsulphatase enzymes as well as plant biomass accumulation and physiological attributes. Moreover, agricultural waste-derived biochar was found to be effective in enhancing substrate-induced respirations. This study thus concluded that biochar derived from various feedstocks has the tendency to improve soil health and plant growth attributes which further depend on the type of modification prior to pyrolysis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40101 - Agriculture

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Soil Science and Plant Nutrition

  • ISSN

    0718-9508

  • e-ISSN

    0718-9516

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    4899-4911

  • UT code for WoS article

    001057033000001

  • EID of the result in the Scopus database

    2-s2.0-85169302577