Progress in EU Breeding Blanket design and integration
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F18%3AN0000054" target="_blank" >RIV/26722445:_____/18:N0000054 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0920379618302989" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0920379618302989</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fusengdes.2018.04.009" target="_blank" >10.1016/j.fusengdes.2018.04.009</a>
Alternative languages
Result language
angličtina
Original language name
Progress in EU Breeding Blanket design and integration
Original language description
In Europe (EU), in the frame of the EUROfusion consortium activities, four Breeding Blanket (BB) concepts are being developed with the aim of fulfilling the performances required by a near-term fusion power demonstration plant (DEMO) in terms of tritium self-sufficiency and electricity production. The four blanket options cover a wide range of technological possibilities, as water and helium are considered as possible coolants and solid ceramic breeder in combination with beryllium and PbLi as tritium breeder and neutron multipliers. The strategy for the BB selection and operation has to account for the challenging schedule of the EU DEMO, the ambitious operational requirements of the BBs and the still large development needed to have a BB qualified and licensed for operating in DEMO. In parallel to the continuous design efforts on the four blanket concepts, their integration in-vessel and ex-vessel has started. On the one hand it has become clear that despite the numerous systems to be integrated in-vessel the protection of the blanket first wall has to be addressed with highest priority. On the other hand the ex-vessel interfaces and the requirements imposed by the blanket to the primary heat transfer system and to the PbLi loop components have a considerable impact on the whole DEMO Plant layout. The aim of this paper is: to present the strategy for the DEMO BB down selection and BB operation in DEMO; to describe the status of the design evolution of the four EU BB concepts; to provide an overview of the challenges of the in-vessel and ex-vessel integration of the main systems interfacing the BBs and describe their design status.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Result continuities
Project
<a href="/en/project/LQ1603" target="_blank" >LQ1603: Research for SUSEN</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fusion Engineering and Design
ISSN
0920-3796
e-ISSN
1873-7196
Volume of the periodical
136
Issue of the periodical within the volume
SI
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
782-792
UT code for WoS article
000452583700145
EID of the result in the Scopus database
2-s2.0-85047630598