Distinguishing between Shock-darkening and Space-weathering Trends in Ordinary Chondrite Reflectance Spectra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F20%3AN0000089" target="_blank" >RIV/26722445:_____/20:N0000089 - isvavai.cz</a>
Alternative codes found
RIV/67985831:_____/20:00541356
Result on the web
<a href="https://iopscience.iop.org/article/10.3847/PSJ/aba7c2/pdf" target="_blank" >https://iopscience.iop.org/article/10.3847/PSJ/aba7c2/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/PSJ/aba7c2" target="_blank" >10.3847/PSJ/aba7c2</a>
Alternative languages
Result language
angličtina
Original language name
Distinguishing between Shock-darkening and Space-weathering Trends in Ordinary Chondrite Reflectance Spectra
Original language description
Space-weathering as well as shock effects can darken meteorite and asteroid reflectance spectra. We present a detailed comparative study on shock-darkening and space-weathering using different lithologies of the Chelyabinsk LL5 chondrite. Compared to space-weathering, the shock processes do not cause significant spectral slope changes and are more efficient in attenuating the orthopyroxene 2 μm absorption band. This results in a distinct shock vector in the reflectance spectra principal component analysis, moving the shocked silicate-rich Chelyabinsk spectra from the S-complex space into the C/X complex. In contrast to this, the space-weathering vector stays within the S complex, moving from Q type to S type. Moreover, the 2 μm to 1 μm band depth ratio (BDR) as well as the 2 μm to 1 μm band area ratio (BAR) are not appreciably affected by shock-darkening or shock melting. Space-weathering, however, causes significant shifts in both BDR and BAR toward higher values. Application of the BDR method to the three distinct areas on the asteroid Itokawa reveals that Itokawa is rather uniformly space-weathered and not influenced by regolith roughness or relative albedo changes.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10505 - Geology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
The Planetary Science Journal
ISSN
2632-3338
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
1-12
UT code for WoS article
—
EID of the result in the Scopus database
—