All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Basic Microstructural Characterization of Second Phases in Homogeneous Weld Joint Made of X6CrNiNbN25-20 Steel After Long-Term Exposure Time at 973 K

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F21%3AN0000013" target="_blank" >RIV/26722445:_____/21:N0000013 - isvavai.cz</a>

  • Result on the web

    <a href="https://asmedigitalcollection.asme.org/nuclearengineering/article-abstract/7/2/024505/1089047/Basic-Microstructural-Characterization-of-Second?redirectedFrom=fulltext" target="_blank" >https://asmedigitalcollection.asme.org/nuclearengineering/article-abstract/7/2/024505/1089047/Basic-Microstructural-Characterization-of-Second?redirectedFrom=fulltext</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1115/1.4048900" target="_blank" >10.1115/1.4048900</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Basic Microstructural Characterization of Second Phases in Homogeneous Weld Joint Made of X6CrNiNbN25-20 Steel After Long-Term Exposure Time at 973 K

  • Original language description

    New blocks of fossil fuel power plants designed for steam temperatures above 873 K require advanced stainless steels as material for superheater or reheater systems. Weld joints are critical parts in fossil power units. Great attention is paid to the exploitation of new steel grades with higher material properties. In the austenitic steels family, the superior grade is undoubtedly HR3C steel (X6CrNiNbN25-20). A detailed knowledge on stability and microstructure composition during thermal exposure of the weld joints made from HR3C is necessary in order to use them in fossil fuel power plants with ultrasupercritical (USC) and new advanced ultrasupercritical (A-USC) steam parameters. The aim of the paper is to identify critical minor phases in HR3C steel, which allow acceleration of creep damage. The sigma-phase and rough carbides M23C6 type is considered as such a phases in this steel. In this study, the sigma-phase is identified and studied in more detail in relation to the development of creep damage at 973 K. Experimental material of the homogeneous HR3C weld joints in two states: in the as-welded state (AW) and after the postweld heat treatment (PWHT). Weld joints were manufactured by orbital welding using the gas tungsten arc welding (GTAW) method, heat input Q(s) = 1600 J/mm, interpass 423 K, three beads. Nickel-base alloy UTP A6170 Co (equivalent to Thermanit 617) was used as a filler material. The PWHT was carried out at the temperature of 1503 K for 15 min. Stress rupture tests were performed on the cross-weld (CW) joints of tubes o 38 x 6.3 mm at 973 K with times to rupture up to nearly 22,000 h. The polished surface of the longitudinal sections was subjected to color etching in Murakami (30 g K-3(Fe(CN)(6)), 30 g KOH, 60 ml H2O) in order to highlight the sigma-phase. Several microscopic techniques were used for the study. The results were supplemented by creep, grain size, and microhardness data hardness vickers (HV) 0.5. The PWHT specimens exhibited an average sigma-phase size of approximately 5 mu m as well as AW specimens in specimens with short time to rupture (t(r)). However, t(r) such as 20,000 h, the average sigma-phase size already reached dangerous border 10 mu m. The AW specimens as opposed to the PWHT specimens did not show a noticeable growth of austenitic grains in the heat-affected zone (HAZ). In specimens after PWHT, the average grain size in HAZ was more than twice that of the body material (BM). It is worth noting that creep ductility values of specimens in the state after PWHT are very low, which is the result of coarse-grained structure in the HAZ and accelerated precipitation of sigma-phase particles along grain boundaries during creep at 973 K.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20305 - Nuclear related engineering; (nuclear physics to be 1.3);

Result continuities

  • Project

    <a href="/en/project/LQ1603" target="_blank" >LQ1603: Research for SUSEN</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Nuclear Engineering and Radiation Science

  • ISSN

    2332-8983

  • e-ISSN

    2332-8975

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    5

  • Pages from-to

    1-5

  • UT code for WoS article

    000630005800012

  • EID of the result in the Scopus database

    2-s2.0-85097461096