Passive Hydrogen Recombination during a Beyond Design Basis Accident in a Fusion DEMO Plant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F23%3AN0000023" target="_blank" >RIV/26722445:_____/23:N0000023 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1996-1073/16/6/2569" target="_blank" >https://www.mdpi.com/1996-1073/16/6/2569</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en16062569" target="_blank" >10.3390/en16062569</a>
Alternative languages
Result language
angličtina
Original language name
Passive Hydrogen Recombination during a Beyond Design Basis Accident in a Fusion DEMO Plant
Original language description
One of the most important environmental and safety concerns in nuclear fusion plants is the confinement of radioactive substances into the reactor buildings during both normal operations and accidental conditions. For this reason, hydrogen build-up and subsequent ignition must be avoided, since the pressure and energy generated may threaten the integrity of the confinement structures, causing the dispersion of radioactive and toxic products toward the public environment. Potentially dangerous sources of hydrogen are related to the exothermal oxidation reactions between steam and plasma-facing components or hot dust, which could occur during accidents such as the in-vessel loss of coolant or a wet bypass. The research of technical solutions to avoid the risk of a hydrogen explosion in large fusion power plants is still in progress. In the safety and environment work package of the EUROfusion consortium, activities are ongoing to study solutions to mitigate the hydrogen explosion risk. The main objective is to preclude the occurrence of flammable gas mixtures. One identified solution could deal with the installation of passive autocatalytic recombiners into the atmosphere of the vacuum vessel pressure suppression system tanks. A model to control the PARs recombination capacity as a function of thermal-hydraulic parameters of suppression tanks has been modeled in MELCOR. This paper aims to test the theoretical effectiveness of the PAR intervention during an in-vessel loss of coolant accident without the intervention of the decay heat removal system for the Water-Cooled LithiumLead concept of EU-DEMO.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Result continuities
Project
<a href="/en/project/9D22001" target="_blank" >9D22001: Implementation of activities described in the Roadmap to Fusion during Horizon Europe through a joint programme of the members of the EUROfusion consortium</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Energies
ISSN
1996-1073
e-ISSN
1996-1073
Volume of the periodical
16
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
1-20
UT code for WoS article
000957952800001
EID of the result in the Scopus database
2-s2.0-85151934642