All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Carbon-enriched organic amendments differently affect the soil chemical, biological properties and plant biomass in a cultivation time-dependent manner

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26788462%3A_____%2F22%3AN0000011" target="_blank" >RIV/26788462:_____/22:N0000011 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26310/22:PU147175 RIV/62156489:43210/22:43921752 RIV/00216208:11310/22:10445709

  • Result on the web

    <a href="https://chembioagro.springeropen.com/articles/10.1186/s40538-022-00319-x" target="_blank" >https://chembioagro.springeropen.com/articles/10.1186/s40538-022-00319-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s40538-022-00319-x" target="_blank" >10.1186/s40538-022-00319-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Carbon-enriched organic amendments differently affect the soil chemical, biological properties and plant biomass in a cultivation time-dependent manner

  • Original language description

    The farmyard manure application maintains quality of arable soils, provides nutrients, mitigates climate change by soil carbon sequestration. Biochar and other complex carbon rich amendments may stabilize organic matter derived by composting and decelerate organic carbon mineralization. However, how the combined utilization of biochar, humic substances and manure effects on soil chemical and biological properties have been least explored, especially their effect on soil basal and substrate induced respirations are needed to be further explored. Therefore, the potential of biochar and Humac (a commercial humic substances product) in combination with manure to improve the soil properties and plant growth was investigated in this experiment using barley under a short-term (12 weeks) and maize under long-term (following 12 weeks, a total of 24 weeks) cultivation. In the early phase of cultivation (12 weeks) Humac- or biochar-enriched manures (M + H, M + B, respectively) enhanced the contents of nutrient elements (carbon + 5.6% and + 7%, nitrogen + 6.7% and − 5%, sulphur − 7.9% and + 18.4%), the activity of enzymes including (β-glucosidase + 32% and + 9.6%, phosphatase + 11% and 6.3%), and dry aboveground biomass (+ 21% and + 32%), compared to the control and manure-treated soil. However, these impacts of M + H and M + B manures were reduced under longer period, i.e., at the experiment end (24 weeks). After 24 weeks of cultivation, a decrease in absolute values of all determined enzyme activities indicated putative reduction of mineralization rate due to presumed higher recalcitrance of manure-derived organic matter, with Humac, biochar amendments. Increased stability of soil organic matter reduced microbial activity due to lower availability of nutrients. Possibly, the shortened period of manure maturation could help preserve a higher amount of less degraded organic matter in the enriched manures to counteract these observed features. We summarized that the biochar and humic substances combined with manure have the potential to improve the soil characteristics, plant biomass and soil health indicators but the improvements faded away in a cultivation time-dependent manner. Further studies are required to explore the structure and functioning of microbial activities under long-term experimental conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical and Biological Technologies in Agriculture

  • ISSN

    2196-5641

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    52

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000832718200001

  • EID of the result in the Scopus database