All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Effect of Artificial Neural Network Architecture on Surface Roughness Parameter Prediction Capability when Turning Inconel 718

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13420%2F16%3A43888266" target="_blank" >RIV/44555601:13420/16:43888266 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Effect of Artificial Neural Network Architecture on Surface Roughness Parameter Prediction Capability when Turning Inconel 718

  • Original language description

    This paper investigates the influence of Artificial Neural Network (ANN) architectures on its prediction capability when machining nickel based super alloy. The ANN was employed to determine surface roughness parameter Ra through cutting conditions, tool wear and process monitoring indices such a cutting force components. The ANN structure was optimized by methods like a reduction of input vector parameters, dimensions of input data pattern, combined reduction and modification of hidden layers. Calculated and experimentally measured values were compared for each optimized ANN model. The work concludes that optimization of ANN has significant influence on prediction capability and accuracy for the task proposed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JR - Other machinery industry

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Manufacturing Technology

  • ISSN

    1213-2489

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    6

  • Pages from-to

    834-839

  • UT code for WoS article

  • EID of the result in the Scopus database