The Effect of Artificial Neural Network Architecture on Surface Roughness Parameter Prediction Capability when Turning Inconel 718
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13420%2F16%3A43888266" target="_blank" >RIV/44555601:13420/16:43888266 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Effect of Artificial Neural Network Architecture on Surface Roughness Parameter Prediction Capability when Turning Inconel 718
Original language description
This paper investigates the influence of Artificial Neural Network (ANN) architectures on its prediction capability when machining nickel based super alloy. The ANN was employed to determine surface roughness parameter Ra through cutting conditions, tool wear and process monitoring indices such a cutting force components. The ANN structure was optimized by methods like a reduction of input vector parameters, dimensions of input data pattern, combined reduction and modification of hidden layers. Calculated and experimentally measured values were compared for each optimized ANN model. The work concludes that optimization of ANN has significant influence on prediction capability and accuracy for the task proposed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JR - Other machinery industry
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Manufacturing Technology
ISSN
1213-2489
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
6
Pages from-to
834-839
UT code for WoS article
—
EID of the result in the Scopus database
—