Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F15%3A43886623" target="_blank" >RIV/44555601:13440/15:43886623 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/15:10292878 RIV/67985858:_____/15:00472732
Result on the web
<a href="http://dx.doi.org/10.1021/jp509401d" target="_blank" >http://dx.doi.org/10.1021/jp509401d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/jp509401d" target="_blank" >10.1021/jp509401d</a>
Alternative languages
Result language
angličtina
Original language name
Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry
Original language description
We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali metal halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge nonpolarizable SPC/E, (ii) Drude point charge polarizable SWM4-DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas-phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CF - Physical chemistry and theoretical chemistry
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP208%2F10%2F1724" target="_blank" >GAP208/10/1724: Molecular simulation studies of structure and dynamics of ice surfaces in the presence of impurities and atmospheric pollutants</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
ISSN
1089-5639
e-ISSN
—
Volume of the periodical
119
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
488-500
UT code for WoS article
000348491800007
EID of the result in the Scopus database
—