All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thin SnOx films for surface plasmon resonance enhanced ellipsometric gas sensing (SPREE)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F17%3A43892832" target="_blank" >RIV/44555601:13440/17:43892832 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.beilstein-journals.org/bjnano/articles/8/56" target="_blank" >https://www.beilstein-journals.org/bjnano/articles/8/56</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3762/bjnano.8.56" target="_blank" >10.3762/bjnano.8.56</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thin SnOx films for surface plasmon resonance enhanced ellipsometric gas sensing (SPREE)

  • Original language description

    Background: Gas sensors are very important in several fields like gas monitoring, safety and environmental applications. In this approach, a new gas sensing concept is investigated which combines the powerful adsorption probability of metal oxide conductive sensors (MOS) with an optical ellipsometric readout. This concept shows promising results to solve the problems of cross sensitivity of the MOS concept. Results: Undoped tin oxide (SnOx) and iron doped tin oxide (Fe:SnOx) thin add-on films were prepared by magnetron sputtering on the top of the actual surface plasmon resonance (SPR) sensing gold layer. The films were tested for their sensitivity to several gas species in the surface plasmon resonance enhanced (SPREE) gas measurement. It was found that the undoped tin oxide (SnOx) shows higher sensitivities to propane (C3H8) then to carbon monoxide (CO). By using Fe:SnOx, this relation is inverted. This behavior was explained by a change of the amount of binding sites for CO in the layer due to this iron doping. For hydrogen (H2) no such relation was found but the sensing ability was identical for both layer materials. This observation was related to a different sensing mechanism for H2 which is driven by the diffusion into the layer instead of adsorption on the surface. Conclusion: The gas sensing selectivity can be enhanced by tuning the properties of the thin film overcoating. A relation of the binding sites in the doped and undoped SnOx films and the gas sensing abilities for CO and C3H8 was found. This could open the path for optimized gas sensing devices with different coated SPREE sensors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/LM2015073" target="_blank" >LM2015073: Nanomaterials and Nanotechnologies for Environment Protection and Sustainable Future</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Beilstein Journal Nanotechnology

  • ISSN

    2190-4286

  • e-ISSN

  • Volume of the periodical

    2017

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    8

  • Pages from-to

    522-529

  • UT code for WoS article

    000396264300001

  • EID of the result in the Scopus database