Splitting schemes for the pedestrian flow problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F19%3A43894764" target="_blank" >RIV/44555601:13440/19:43894764 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/19:00334860
Result on the web
<a href="http://dx.doi.org/10.1063/1.5114001" target="_blank" >http://dx.doi.org/10.1063/1.5114001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5114001" target="_blank" >10.1063/1.5114001</a>
Alternative languages
Result language
angličtina
Original language name
Splitting schemes for the pedestrian flow problem
Original language description
We consider the Pedestrian Flow Equations (PFEs) as the first order hyperbolic system with the source term. This formulation is obtained from the governing equations for the two dimensional compressible inviscid flow in terms density ? and velocity v. The pressure p is eliminated supposing the power law for isentropic gases. The outer volume forces are replaced by the correction of the velocity to the desired one. The density dependent direction ? of the desired velocity plays an important role in the source term and represents the coupling with the fluid dynamics equations. Two different approaches are proposed for the discretization of the source term. Two different splitting schemes are proposed for the numerical solution of the coupled system. The numerical examples of the solution of the PFEs are presented
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings
ISBN
978-0-7354-1854-7
ISSN
0094-243X
e-ISSN
0094243X
Number of pages
4
Pages from-to
0300171-0300174
Publisher name
American Institute of Physics Inc.
Place of publication
Melville
Event location
Rhodes
Event date
Sep 13, 2018
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000521108600020