Bayesian networks' development based on noisy-max nodes for modeling investment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F19%3A43894893" target="_blank" >RIV/44555601:13440/19:43894893 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-2386/paper1.pdf" target="_blank" >http://ceur-ws.org/Vol-2386/paper1.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bayesian networks' development based on noisy-max nodes for modeling investment
Original language description
This article focuses on the use of Bayesian networks for analyzing the growth relationship of Ukraine's gross domestic product (GDP) from the volume of investment in the transport industry and offers a comparative description of the use of different structural training algorithms. It is shown that Noisy-max nodes as compared to General nodes provide relatively high initial accuracy. General nodes require a repeated validation procedure. When using the Hirerical sampling method, the accuracy of the network result with General nodes remains unchanged, and with Noisy-max nodes, it increases (in our case, by 12.32%). However, Noisy-max nodes entail an increase in time and computational costs.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
10
Pages from-to
"nestrankovano"
Publisher name
CEUR-WS
Place of publication
Paris
Event location
Shatsk
Event date
Jun 2, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—