Comparison Analysis of Clustering Quality Criteria Using Inductive Methods of Objective Clustering
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F20%3A43895694" target="_blank" >RIV/44555601:13440/20:43895694 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/book/10.1007/978-3-030-61656-4" target="_blank" >https://link.springer.com/book/10.1007/978-3-030-61656-4</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Comparison Analysis of Clustering Quality Criteria Using Inductive Methods of Objective Clustering
Original language description
In this paper, we present the results of the research concerning comparison analysis of both the internal and external clustering quality criteria for clustering various types of datasets using density-based DBSCAN clustering algorithm implemented based on Inductive Methods of Objective Clustering (IMOC). Implementation of the IMOC technique assumes division of the initial dataset into two similar subsets contained the same number of pairwise similar objects at the first step of this procedure implementation. Then, we have executed the data clustering on the obtained subsets concurrently within the range of the appropriate algorithm parameters variation with estimation of various types of clustering quality criteria (internal (IQC) and external (EQC)) at each step of this procedure implementation. The final solution concerning algorithm optimal parameters determination was made based on the maximum values of the complex balance criterion (CBC) which contains both the ICQ and ECQ as the components. The analysis of the simulation results has allowed us to evaluate the effectiveness of both the internal and external clustering quality criteria to determine the optimal parameters of clustering algorithm using various type of data. To our mind, the obtained results can allow us to increase the clustering procedure exactness and to decrease the reproducibility error.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Communications in Computer and Information Science
ISBN
978-3-030-61655-7
ISSN
1865-0929
e-ISSN
1865-0937
Number of pages
17
Pages from-to
150-166
Publisher name
Springer Nature Switzerland AG
Place of publication
Switzerland
Event location
Lviv, Ukraine
Event date
Aug 21, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—