Dynamic bayesian networks application for evaluating the investment projects effectiveness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F21%3A43895581" target="_blank" >RIV/44555601:13440/21:43895581 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-54215-3_20" target="_blank" >http://dx.doi.org/10.1007/978-3-030-54215-3_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-54215-3_20" target="_blank" >10.1007/978-3-030-54215-3_20</a>
Alternative languages
Result language
angličtina
Original language name
Dynamic bayesian networks application for evaluating the investment projects effectiveness
Original language description
In this paper, we propose a methodology for using dynamic Bayesian networks (DBN) in the tasks of assessing the success of an investment project. The methods of constructing DBN, their parametric learning, validation and scenario analysis of "What-if" are considered. A dynamic Bayesian model has been developed for scenario analysis and forecasting the success of an investment project. The model takes into account the time component and is designed in collaboration with expert economists in the selection and quantification of input and output variables. Now, using the dynamic Bayesian model, it is possible with a certain degree of probability to assess the degree of success of the capital investment, without incurring monetary and temporary losses. This will greatly facilitate the investment forecast for identifying profitable investment sources. This is the advantage of the proposed approach.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing
ISBN
978-3-030-54214-6
ISSN
2194-5357
e-ISSN
2194-5365
Number of pages
16
Pages from-to
315-330
Publisher name
Springer
Place of publication
Cham
Event location
Kherson
Event date
May 25, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000614116800020