Quaternized Chitosan/Heparin Polyelectrolyte Multilayer Films for 2 Protein Delivery
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F22%3A43897067" target="_blank" >RIV/44555601:13440/22:43897067 - isvavai.cz</a>
Result on the web
<a href="https://pubs.acs.org/doi/10.1021/acs.biomac.2c00926" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.biomac.2c00926</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.biomac.2c00926" target="_blank" >10.1021/acs.biomac.2c00926</a>
Alternative languages
Result language
angličtina
Original language name
Quaternized Chitosan/Heparin Polyelectrolyte Multilayer Films for 2 Protein Delivery
Original language description
Layer-by-layer (LbL) polyelectrolyte coatings are intensively studied as reservoirs of bioactive proteins for modulating interactions between biomaterial surfaces and cells. Mild conditions for the incorporation of growth factors into delivery systems are required to maintain protein bioactivity. Here, we present LbL films composed of water-soluble N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (HTCC), heparin (Hep), and tannic acid (TA) fabricated under physiological conditions with the ability to release heparin-binding proteins. Surface plasmon resonance analysis showed that the films formed on an anchoring HTCC/TA bilayer, with TA serving as a physical crosslinker, were more stable during their assembly, leading to increased film thickness and increased protein release. X-ray reflectivity measurements confirmed intermixing of the deposited layers. Protein release also increased when the proteins were present as an integral part of the Hep layers rather than as individual protein layers. The 4-week release pattern depended on the protein type; VEGF, CXCL12, and TGF-beta 1 exhibited a typical high initial release, whereas FGF-2 was sustainably released over 4 weeks. Notably, the films were nontoxic, and the released proteins retained their bioactivity, as demonstrated by the intensive chemotaxis of T-lymphocytes in response to the released CXCL12. Therefore, the proposed LbL films are promising biomaterial coating candidates for stimulating cellular responses.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21001 - Nano-materials (production and properties)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biomacromolecules
ISSN
1525-7797
e-ISSN
1526-4602
Volume of the periodical
23
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
4734-4748
UT code for WoS article
000886824100001
EID of the result in the Scopus database
2-s2.0-85140966930