An introduction to robust data analysis and its applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898488" target="_blank" >RIV/44555601:13440/24:43898488 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10479-024-06167-2" target="_blank" >https://link.springer.com/article/10.1007/s10479-024-06167-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10479-024-06167-2" target="_blank" >10.1007/s10479-024-06167-2</a>
Alternative languages
Result language
angličtina
Original language name
An introduction to robust data analysis and its applications
Original language description
This special issue of the Annals of Operations Research delves into the critical role of robust data analysis in addressing complex real-world challenges across diverse domains, including healthcare, finance, and beyond. A collection of 25 papers explores the latest advancements in robust optimization, machine learning, and performance assessment methodologies. By showcasing the application of these techniques to real-world datasets, this issue highlights the potential of robust data analysis to inform effective decision-making in the face of uncertainty.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Operations Research
ISSN
0254-5330
e-ISSN
1572-9338
Volume of the periodical
2024
Issue of the periodical within the volume
"neuveden"
Country of publishing house
CH - SWITZERLAND
Number of pages
3
Pages from-to
"nestrankovano"
UT code for WoS article
001278321800003
EID of the result in the Scopus database
2-s2.0-85199867949