All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Separation of geochemical signals in fluvial sediments: New approaches to grain-size control and anthropogenic contamination

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13520%2F20%3A43895999" target="_blank" >RIV/44555601:13520/20:43895999 - isvavai.cz</a>

  • Alternative codes found

    RIV/61388980:_____/20:00534134 RIV/61989592:15310/20:73604789

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0883292720302687" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0883292720302687</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apgeochem.2020.104791" target="_blank" >10.1016/j.apgeochem.2020.104791</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Separation of geochemical signals in fluvial sediments: New approaches to grain-size control and anthropogenic contamination

  • Original language description

    A compositional data analysis (CoDA) in fluvial sediments is performed to achieve separation of the geochemical signals (SGS) of grain size, anthropogenic contamination, and possible post-depositional alteration. The SGS is demonstrated and developed in the study of the sediments from the Skalka Reservoir (Czechia) and the flood-plain of its tributary rivers, which have been impacted by pollution from the Chemical Factory Marktredwitz (Bavaria, Germany) brought through temporary sinks in the channels and floodplains to the reservoir. This paper compares CoDA tools with standard empirical approaches based on using deeper strata as uncontaminated or pre-industrial (examination of element concentration depth profiles), scatterplots with risk elements (mainly Zn in this study) as dependent variables and lithogenic reference elements as independent variables to construct background functions and to calculate local enrichment factors (LEF), and a principal component analysis performed on raw and geochemically normalised elemental concentrations. The utilised CoDA tools include classical and robust methods using the log-ratio approach that fully respects the mathematical specificity of the compositional data (data closure, or more generally scale invariance, and further related aspects like non-Gaussian distribution, and commonly polymodality) like the robust PCA with centred log-ratio (clr) transformation of concentrations; consequently, histograms of the raw and normalised concentrations and contamination scores were compared. The multivariate CoDA was considerably facilitated by a novel tool for understanding the grain-size control of sediment composition, i.e. a functional data analysis of particle size distributions (densities) based on Bayes spaces. Also, the robust correlation analysis was efficient using a (log-) ratio methodology. Several elements can be used for the geochemical normalisation and LEF calculations, of which Al, Fe, and Ti can definitely be recommended, while Cr, Mg, and even Si also produced comparable results. A more critical factor is a proper selection of the background functions. We demonstrated the limits of using some popular tools for the compositional data mining: the ordinary PCA failed or performed worse than LEF in the separation of grain-size and contamination signals. Some log-ratio methods performed well, in particular robust regression with selected (lithogenic elements at explaining side) and robust PCA with clr transformation. Even for apparently simple tasks, such as the separation of anthropogenic contamination signals, knowledgeable decisions during data preparation for the CoDA are still indispensable.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Geochemistry

  • ISSN

    0883-2927

  • e-ISSN

  • Volume of the periodical

    123

  • Issue of the periodical within the volume

    104791

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    1-16

  • UT code for WoS article

    000597174300005

  • EID of the result in the Scopus database

    2-s2.0-85094111254