Miscanthus biochar value chain-A review
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13520%2F21%3A43896246" target="_blank" >RIV/44555601:13520/21:43896246 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0301479721006733?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0301479721006733?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jenvman.2021.112611" target="_blank" >10.1016/j.jenvman.2021.112611</a>
Alternative languages
Result language
angličtina
Original language name
Miscanthus biochar value chain-A review
Original language description
To complete a loop of the Miscanthus value chain including production, phytomanagement, conversion to energy, and bioproducts, the wastes accumulated from these processes have to be returned to the production cycle to provide sustainable use of the feedstock, to reduce costs, and to ensure a zero-waste approach. This can be achieved by converting Miscanthus feedstock into biogas and biochar using pyrolysis and then returning biochar to the production cycle of Miscanthus crop applications in the phytotechnology of trace elements (TEs)contaminated/marginal lands. These processes are subjects of the current review, which focused on the peculiarities of biochar received from Miscanthus by pyrolysis, its properties, the impact on soil characteristics, the phytoremediation process, biomass yield, and the abundance of soil biodiversity. Results from the literature indicated that the pH, surface area, and porosity of Miscanthus biochar are important in determining its impact on soil characteristics. It was inferred that the most effective Miscanthus biochar was produced with a pyrolysis temperature of about 600 ?C with a residence time from about 30 min to an hour. Another important factor that determined the impact of Miscanthus biochar on soil health is the application rate: with its increase, the effect became more essential, and the recommended rate is between 5% and 10%. The influence of Miscanthus biochar on the TEs phytoremediation parameters is less studied, generally Miscanthus biochar produced at higher temperatures and added with higher application rates is more likely to restrict the mobility and availability of TEs by different plants. However, some published results are contradictory to these conclusions and showed absence of significant difference in TEs reduction during application of different Miscanthus biochar doses. The future experimental studies have to focus on determining the impact of a technological pyrolysis regime on Miscanthus biochar properties on TEs-contaminated or marginal land when biochar will be obtained from contaminated rhizomes and waste after the application of phytotechnology. In addition, studies must explore the influence of this biochar on TEs phytoparameters, enhancements in biomass yield, improvements in soil parameters, and the abundance of soil diversity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Environmental Management
ISSN
0301-4797
e-ISSN
—
Volume of the periodical
290
Issue of the periodical within the volume
112611
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
1-11
UT code for WoS article
000656441400008
EID of the result in the Scopus database
2-s2.0-85104488846