All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

About the link between biodiversity and spectral variation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13520%2F22%3A43896922" target="_blank" >RIV/44555601:13520/22:43896922 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1111/avsc.12643" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/avsc.12643</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/avsc.12643" target="_blank" >10.1111/avsc.12643</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    About the link between biodiversity and spectral variation

  • Original language description

    Aim: The spectral variability hypothesis (SVH) suggests a link between spectral variation and plant biodiversity. The underlying assumptions are that higher spectral variation in canopy reflectance (depending on scale) is caused by either (1) variation in habitats or linked vegetation types or plant communities with their specific optical community traits or (2) variation in the species themselves and their specific optical traits. Methods: The SVH was examined in several empirical remote-sensing case studies, which often report some correlation between spectral variation and biodiversity-related variables (mostly plant species counts); however, the strength of the observed correlations varies between studies. In contrast, studies focussing on understanding the causal relationship between (plant) species counts and spectral variation remain scarce. Here, we discuss these causal relationships and support our perspectives through simulations and experimental data. Results: We reveal that in many situations the spectral variation caused by species or functional traits is subtle in comparison to other factors such as seasonality and physiological status. Moreover, the degree of contrast in reflectance has little to do with the number but rather with the identity of the species or communities involved. Hence, spectral variability should not be expressed based on contrast but rather based on metrics expressing manifoldness. While we describe cases where a certain link between spectral variation and plant species diversity can be expected, we believe that as a scientific hypothesis (which suggests a general validity of this assumed relationship) the SVH is flawed and requires refinement. Conclusions: To this end we call for more research examining the drivers of spectral variation in vegetation canopies and their link to plant species diversity and biodiversity in general. Such research will allow critically assessing under which conditions spectral variation is a useful indicator for biodiversity monitoring and how it could be integrated into monitoring networks.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10619 - Biodiversity conservation

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Vegetation Science

  • ISSN

    1654-109X

  • e-ISSN

    1654-109X

  • Volume of the periodical

    2022

  • Issue of the periodical within the volume

    25

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000774733000010

  • EID of the result in the Scopus database

    2-s2.0-85127389779