The KDE+ software: a tool for effective identification and ranking of animal-vehicle collision hotspots along networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44994575%3A_____%2F16%3AN0000076" target="_blank" >RIV/44994575:_____/16:N0000076 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007/s10980-015-0265-6" target="_blank" >http://link.springer.com/article/10.1007/s10980-015-0265-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10980-015-0265-6" target="_blank" >10.1007/s10980-015-0265-6</a>
Alternative languages
Result language
angličtina
Original language name
The KDE+ software: a tool for effective identification and ranking of animal-vehicle collision hotspots along networks
Original language description
Objective identification of locations on transportation networks, where animal-vehicle collisions (AVC) occur more frequently than expected (hotspots), is an important step for the effective application of mitigation measures.We introduce the KDE+ software which is a programmed version of the KDE+ method for effective identification of traffic accident hotspots. The software can be used in order to analyze animal-vehicle collision data. The KDE+ method is based on principles of Kernel Density Estimation (KDE). The symbol ‘+’ indicates that the method allows for the objective selection of significant clusters and for the ranking of the hotspots. It is also simultaneously applicable to an unlimited number of road segments. We applied the KDE+ method to the entire Czech road network. The hotspots were ranked according to their significance. The resulting hotspots represent a short overall road length which should require a more detailed assessment in the field. The 100 most important clusters of AVC represent, for example, only 19.7 km of the entire road network (37,469 km). We present an objective method for hotspots identification which can be used for AVC data. This method is unique because it determines the significance level of hotspots in an objective way. The prioritization of hotspots allows a transportation manager to effectively allocate resources to a feasible number of identified hotspots. We describe the software, data preparation and present the KDE+ application to AVC data.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JO - Land transport systems and equipment
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED2.1.00%2F03.0064" target="_blank" >ED2.1.00/03.0064: Transport R&D Centre</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Landscape Ecology
ISSN
0921-2973
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
231–237
UT code for WoS article
000372318900003
EID of the result in the Scopus database
—