All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Status of computational fluid dynamics for in-vessel retention: Challenges and achievements

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46356088%3A_____%2F20%3AN0000045" target="_blank" >RIV/46356088:_____/20:N0000045 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0306454919305067" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306454919305067</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.anucene.2019.107004" target="_blank" >10.1016/j.anucene.2019.107004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Status of computational fluid dynamics for in-vessel retention: Challenges and achievements

  • Original language description

    During a severe accident in a nuclear reactor, core damage occurs and may lead to the formation of corium, followed by relocation to the vessel lower head. The decay heat released by the corium can threaten the integrity of the vessel, if no effective cooling mechanism is in place. In-Vessel Retention (IVR) is a severe accident mitigation strategy that has been shown to work for low-to-intermediate power reactors. For high power reactors, many uncertainties still exist. In an attempt to remove some of these uncertainties, the European H2020 IVMR project was launched in 2015. The focus of this project is on obtaining the additional, necessary, experimental data in order to improve on current modelling strategies. One of the modelling strategies investigated is the potential use of CFD codes in assessing the feasibility of IVR for high power reactors. The main focus of the CFD studies is on two important aspects of IVR: the presence of a metallic layer on top of the corium pool and the homogenous corium pool. These aspects are analysed by studying the thermal hydraulic features of a thin metal layer and that of a homogeneous pool. In this paper, first the used codes and numerical approaches are presented. The numerical models are subsequently assessed by comparing numerical results with relevant simulant-based experimental data, resulting, in general, in good agreement. The codes are then used to perform exploratory computations under prototypical conditions. While the behaviours of water and prototypical materials are similar for the oxide pool, significant differences are observed for the metallic layer.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20305 - Nuclear related engineering; (nuclear physics to be 1.3);

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annals of Nuclear Energy

  • ISSN

    0306-4549

  • e-ISSN

  • Volume of the periodical

    135

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000496898500052

  • EID of the result in the Scopus database

    2-s2.0-85071371544