All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Self-heating and dynamic mechanical behavior of silicone rubber composite filled with carbonyl iron particles under cyclic compressive loading

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F21%3A00008984" target="_blank" >RIV/46747885:24210/21:00008984 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.sagepub.com/doi/10.1177/00219983211037055" target="_blank" >https://journals.sagepub.com/doi/10.1177/00219983211037055</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/00219983211037055" target="_blank" >10.1177/00219983211037055</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Self-heating and dynamic mechanical behavior of silicone rubber composite filled with carbonyl iron particles under cyclic compressive loading

  • Original language description

    Self-heating and dynamic mechanical behavior of isotropic silicone rubber composite (SRC) filled with micro-sized carbonyl iron particles (CIPs) subjected to cyclic compressive loading have been studied. Effects of pre-strains from 5 to 20%, strain amplitudes from 1 to 5%, and excitation frequencies from 10 to 50 Hz on the self-heating and dynamic mechanical response of the isotropic SRC were investigated. The self-heating temperatures were measured on the surface and at the center of cylindrical SRC specimens. The self-heating temperatures of the isotropic SRC samples showed a fast increase in an initial transient stage and the following isothermal stage. The temperature distribution in the isotropic SRC specimens was non-homogeneous and the temperature decreased from the center to sample edges. The self-heating temperatures of the isotropic SRC increased gradually with raising the strain amplitude and frequency. However, the difference between the internal and surface temperatures was slight for low strain amplitudes and frequencies, while it was significant for high strain amplitudes and frequencies. The temperatures of the isotropic SRC boosted rapidly with increasing the pre-strain to 10% and thereafter gained slightly. Although the isotropic SRC dynamic moduli reduced with the rise of the strain amplitude, they enhanced with increasing the pre-strain and frequency. Besides, the storage modulus of the isotropic SRC varied slightly with time, while the loss modulus reduced markedly especially at the initial period. The decrease in the loss modulus of the isotropic SRC under cyclic compressive loading is attributed to its self-heating temperature rise. A finite element simulation of the heat transfer in the SRC cylinder was conducted. The calculated temperatures in the SRC cylinder were in good agreement with the measured ones at different strain amplitudes and frequencies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybrid Materials for Hierarchical Structure</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.

Data specific for result type

  • Name of the periodical

    Journal of Composite Materials

  • ISSN

    0021-9983

  • e-ISSN

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    28

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    4273-4292

  • UT code for WoS article

    000684364400001

  • EID of the result in the Scopus database

    2-s2.0-85112441341