All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental Study of Horizontal Flow Boiling Heat Transfer Coefficient and Pressure Drop of R134a from Subcooled Liquid Region to Superheated Vapor Region

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F22%3A00009492" target="_blank" >RIV/46747885:24210/22:00009492 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1073/15/3/681" target="_blank" >https://www.mdpi.com/1996-1073/15/3/681</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en15030681" target="_blank" >10.3390/en15030681</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental Study of Horizontal Flow Boiling Heat Transfer Coefficient and Pressure Drop of R134a from Subcooled Liquid Region to Superheated Vapor Region

  • Original language description

    For the past few years, research in the field of flow boiling heat transfer has gained immense popularity for unravelling the dominant mechanism responsible for controlling heat transfer and identifying a parametric trend for understanding the characteristics of flow boiling heat transfer. This has led to several assumptions and models for predicting heat transfer during flow boiling without any known generalized mechanism. This study therefore seeks to experimentally study the characteristics of heat transfer during flow boiling over a wide range but small increase in vapor quality from a single-phase subcooled region through to a two-phase superheated vapor region. The study was performed with an R134a refrigerant in a single horizontal circular stainless-steel smooth tube that had an internal diameter of 5 mm. In this experimental study, local heat transfer coefficients and frictional pressure drop were measured for low heat fluxes of 4.6-8.5 kW/m(2), mass fluxes of 200-300 kg/(m(2)s), vapor quality from -0.1 to 1.2 and a low constant saturation pressure of 460 kPa. Flow patterns observed during the study were recorded with a high-speed camera at 2000 fps. In covering a wide range of vapor quality, a peak of heat transfer coefficient near a vapor quality of zero and a local minimum observed in the low vapor quality region were observed, and both were sensitive to heat flux and mildly sensitive to mass flux. Generally, at low vapor quality, the heat transfer coefficient deteriorated with vapor quality and this was sensitive to heat flux but insensitive to mass flux and vapor quality, indicating nucleate boiling dominance in low vapor quality regions. In high vapor quality regions, the heat transfer coefficient was sensitive to mass flux and insensitive to heat flux. This indicates the dominance of convective boiling. In the low vapor quality regions, the flow patterns observed were slug and intermittent, while in the high vapor quality region, annular and mist flow patterns were observed. Generally, frictional pressure drop increased with increasing mass flux and vapor quality in the two-phase region.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energies

  • ISSN

    1996-1073

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

  • UT code for WoS article

    000760063200001

  • EID of the result in the Scopus database

    2-s2.0-85123197363