All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental and Theoretical Study of Plastic Deformation of Epoxy Coatings on Metal Substrates Using the Acoustic Emission Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F22%3A00009920" target="_blank" >RIV/46747885:24210/22:00009920 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/15/11/3791/pdf" target="_blank" >https://www.mdpi.com/1996-1944/15/11/3791/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma15113791" target="_blank" >10.3390/ma15113791</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental and Theoretical Study of Plastic Deformation of Epoxy Coatings on Metal Substrates Using the Acoustic Emission Method

  • Original language description

    Propagation of acoustic emission signals in continuous conjugated media under real-time loading was explored. The results of explored plastic deformation polymer coatings on a metal base using the acoustic emission method with synchronization of deformations and the moments of occurrence of acoustic emission signals are presented. Using the principal component method, the acoustic emission spectra, which make it possible to trace the evolution of deformation transformation processes, were analyzed. Presented the results of theoretical and experimental studies on the separate propagation of acoustic emission vibrations in a polymer coating, a metal base, and their joint combination in the form of multilayer structures. Boundary problems of propagation of acoustic emission signals in the conjugation of continuous media are considered from the standpoint of an elastic continuum and wave representations. The main variables are the force that initiates the appearance of acoustic emission signals and the displacement that determines the propagation of elastic waves. Based on the local rearrangement of the internal structure of conjugated media under conditions of development of deformation processes in the material, the verification of the main theoretical models of energy spectrum acoustic signals in continuous media at the micro-, meso-, and macro-levels was carried out. In this work, we present experimental data on a set of basic acoustic emission characteristics for four-point bending. It is shown that the principal components method reduces the dimension of data while maintaining the least amount of new information. Using the method of principal components to determine the stages of plastic deformation of polymer coatings on a metal base using the acoustic emission method. With the digitalization of acoustic emission signals and noise filtering, new possibilities for isolating a weak signal at the noise level appear even when its amplitude is significantly lower than the noise level. The study results can be used to predict the degree of destruction of two-layer materials under loading.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

  • UT code for WoS article

    000808807700001

  • EID of the result in the Scopus database

    2-s2.0-85131541424