All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Winding optimization of composite frame by dry fiber rovings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F22%3A00010036" target="_blank" >RIV/46747885:24210/22:00010036 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24510/22:00010036 RIV/46747885:24620/22:00010036

  • Result on the web

    <a href="https://journals.sagepub.com/doi/pdf/10.1177/15280837221114639" target="_blank" >https://journals.sagepub.com/doi/pdf/10.1177/15280837221114639</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/15280837221114639" target="_blank" >10.1177/15280837221114639</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Winding optimization of composite frame by dry fiber rovings

  • Original language description

    Light-weight fibers reinforced polymer (FRP) composite frames are essential parts of vehicles body in the aerospace and automotive industries. Composite frames are often designed in complex curved 3D geometry through the dry winding process. The winding process of homogeneously wound-up layers of fibers without overlapping and gaps is the main challenge in the fabrication of frames with consistent thickness and acceptable quality. In this study, an industrial robot and winding head are set with a novel optimum process to wind the dry fiber with the specified angles on the frame, to fabricate it with minimum overlapping and local commulation of fibers, yet without gaps. Mathematical models and algorithms are developed to determine the optimal number of simultaneously wounds rovings of fibers in a given layer. In addition, this study addresses the optimum dry winding of curved parts of frames that form a torus geometry. It is shown that the combination of layers of rovings wound successively on the frame at angles of 45°, 90° (i.e. the rovings are laid along with the frame), and -45°, is the most used variant of winding that provides the composite frame with higher strength. Results indicated that an optimal selection of the number and width of the rovings minimizes the overlap of the wound rovings, which saves up to 20% of the utilized fibers. The derived theory is verified on practical tests and experiments, which confirms the development of new suitable procedures to improve the fabrication of FRP composite frames.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20503 - Textiles; including synthetic dyes, colours, fibres (nanoscale materials to be 2.10; biomaterials to be 2.9)

Result continuities

  • Project

    <a href="/en/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modular platform for autonomous chassis of specialized electric vehicles for freight and equipment transportation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Industrial Textiles

  • ISSN

    1528-0837

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    July-December

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

  • UT code for WoS article

    000922865700031

  • EID of the result in the Scopus database

    2-s2.0-85145224066