The Influence of Additives and Environment on Biodegradation of PHBV Biocomposites
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F22%3A00010269" target="_blank" >RIV/46747885:24210/22:00010269 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-4360/14/4/838" target="_blank" >https://www.mdpi.com/2073-4360/14/4/838</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym14040838" target="_blank" >10.3390/polym14040838</a>
Alternative languages
Result language
angličtina
Original language name
The Influence of Additives and Environment on Biodegradation of PHBV Biocomposites
Original language description
The biodegradation of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) ternary biocomposites containing nature-based plasticizer acetyl tributyl citrate (ATBC), heterogeneous nucleation agents-calcium carbonate (CaCO3) and spray-dried lignin-coated cellulose nanocrystals (L-CNC)-in vermicomposting, freshwater biotope, and thermophilic composting have been studied. The degree of disintegration, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and the evaluation of surface images taken by scanning electron microscopy (SEM) were conducted for the determination influence of different environments and additives on the biodegradation of PHBV. Furthermore, the method adapted from ISO 14855-1 standard was used for thermophilic composting. It is a method based on the measurement of the amount of carbon dioxide evolved during microbial degradation. The highest biodegradation rate was observed in the thermophilic condition of composting. The biodegradation level of all PHBV-based samples was, after 90 days, higher than 90%. Different mechanisms of degradation and consequently different degradation rate were evaluated in vermicomposting and freshwater biotope. The surface enzymatic degradation, observed during the vermicomposting process, showed slightly higher biodegradation potential than the hydrolytic attack of freshwater biotope. The application of ATBC plasticizers in the PHBV matrix caused an increase in biodegradation rate in all environments. However, the highest biodegradation rate was achieved for ternary PHBV biocomposites containing 10 wt. % of ATBC and 10 wt. % of CaCO3. A considerable increase in the degree of disintegration was evaluated, even in freshwater biotope. Furthermore, the slight inhibition effect of L-CNC on the biodegradation process of ternary PHBV/ATBC/L-CNC could be stated.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
<a href="/en/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybrid Materials for Hierarchical Structure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymers
ISSN
2073-4360
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
—
UT code for WoS article
000765246200001
EID of the result in the Scopus database
—