The Effect of Clearance Angle on Tool Life, Cutting Forces, Surface Roughness, and Delamination during Carbon-Fiber-Reinforced Plastic Milling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F23%3A00011616" target="_blank" >RIV/46747885:24210/23:00011616 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1996-1944/16/14/5002/pdf" target="_blank" >https://www.mdpi.com/1996-1944/16/14/5002/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma16145002" target="_blank" >10.3390/ma16145002</a>
Alternative languages
Result language
angličtina
Original language name
The Effect of Clearance Angle on Tool Life, Cutting Forces, Surface Roughness, and Delamination during Carbon-Fiber-Reinforced Plastic Milling
Original language description
This study aimed to investigate the effect of the clearance angle of the milling tool on wear, cutting forces, machined edge roughness, and delamination during non-contiguous milling of carbon-fiber-reinforced plastic (CFRP) composite panels with a twill weave and 90 & DEG; fiber orientation. To achieve the objective of the study, it was first necessary to design suitable tools (6 mm diameter sintered carbide shank milling cutters) with a variety of clearance angles (8.4 & DEG;, 12.4 & DEG;, and 16.4 & DEG;) and all the machinery and measuring equipment for the research to be carried out. Furthermore, measurement and evaluation methods for cutting tool wear, cutting forces, machined edge roughness, and delamination were developed. Last but not least, the results obtained during the research were summarized and evaluated. From the experiments conducted in this study, it was found that the tool clearance angle has a significant effect on tool wear, roughness of the machined surface, and delamination of the carbon fiber composite board. The tool with a clearance angle of 8.4 & DEG; wore faster than the tool with a clearance angle of 16.4 & DEG;. The same trend was observed for cutting force, machined surface roughness, and delamination. In this context, it was also shown that the cutting force increased as the tool wear increased, which in turn increased surface roughness and delamination. These results are of practical significance, not only in terms of the quality of the machined surface but also in terms of time, cost, and energy savings when machining CFRP composite materials.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATERIALS
ISSN
1996-1944
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
14
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
5002
UT code for WoS article
001038871200001
EID of the result in the Scopus database
2-s2.0-85166234609