Two-Step Unsupervised Speaker Adaptation Based on Speaker and Gender Recognition and HMM Combination
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F06%3A%230001345" target="_blank" >RIV/46747885:24220/06:#0001345 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Two-Step Unsupervised Speaker Adaptation Based on Speaker and Gender Recognition and HMM Combination
Original language description
In this paper, we present a new strategy for unsupervised speaker adaptation. In our approach, the adaptation is performed in two steps for each test utterance. In the first online step, we utilize speaker and gender identification, a set of speaker dependent (SD) hidden Markov models (HMMs) and our own fast linear model combination approach to create a proper model for the first speech recognition pass. After that the recognized phonetic transcription of the utterance is used for maximum likelihood (ML) estimation of more accurate weights for the final model combination step. Our experimental results on different types of broadcast programs show that the proposed method is capable to reduce the word error rate (WER) relatively by more than 17 %.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1QS108040569" target="_blank" >1QS108040569: Assistence, information and communication services based on advanced voice technology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING
ISBN
978-1-60423-449-7
ISSN
1990-9772
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
ISCA-INST SPEECH COMMUNICATION ASSOC
Place of publication
Pittsburgh, USA
Event location
Pittsburgh, USA
Event date
Jan 1, 2006
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—