All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Investigation of Deep Neural Networks for Robust Recognition of Nonlinearly Distorted Speech

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F14%3A%230002971" target="_blank" >RIV/46747885:24220/14:#0002971 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Investigation of Deep Neural Networks for Robust Recognition of Nonlinearly Distorted Speech

  • Original language description

    This paper studies the use of hybrid context-dependent Deep Neural Network Hidden Markov Model (DNN-HMM) architecture for robust recognition of speech affected by realworld nonlinear distortions. We consider two types of distortions; a) signals distortedthrough overgained microphone preamplifier in the analog domain and b) recordings exhibiting unnatural spectral sparseness, caused by excessive denoising or low-bit-rate compression. We compare the performance of DNN-HMM architecture with that of the conventional system, based on context-dependent Gaussian Mixture Model (GMM)- HMMs, which applies channel/speaker adaptation and/or feature compensation in the front-end via Histogram Equalization (HEQ). We show that DNN-HMM architecture achieves a significantly lower Word Error Rate (WER) on the considered distorted datasets and that the obtained relative WER reduction is higher than 60%. We also investigate the usefulness of the feature compensation via HEQ for a DNN-HMM system and show

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/TA01011142" target="_blank" >TA01011142: Automatic transcription and indexation of lectures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH 2014)

  • ISBN

  • ISSN

    2308-457X

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    363-367

  • Publisher name

    ISCA

  • Place of publication

    Singapure

  • Event location

    Singapure

  • Event date

    Jan 1, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article