Blind separation of underdetermined linear mixtures based on source nonstationarity and AR(1) modeling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F16%3A00000303" target="_blank" >RIV/46747885:24220/16:00000303 - isvavai.cz</a>
Result on the web
<a href="https://asap.ite.tul.cz/publications/conference-papers/" target="_blank" >https://asap.ite.tul.cz/publications/conference-papers/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2016.7472493" target="_blank" >10.1109/ICASSP.2016.7472493</a>
Alternative languages
Result language
angličtina
Original language name
Blind separation of underdetermined linear mixtures based on source nonstationarity and AR(1) modeling
Original language description
The problem of blind separation of underdetermined instantaneous mixtures of independent signals is addressed through a method relying on nonstationarity of the original signals. The signals are assumed to be piecewise stationary with varying variances in different epochs. In comparison with previous works, in this paper it is assumed that the signals are not i.i.d. in each epoch, but obey a first-order autoregressive model. This model was shown to be more appropriate for blind sepa- ration of natural speech signals. A separation method is proposed that is nearly statistically efficient (approaching the cor- responding Cramer-Rao lower bound), if the separated signals obey the assumed model. In the case of natural speech sig- nals, the method is shown to have separation accuracy better than the state-of-the-art methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-11898S" target="_blank" >GA14-11898S: Semi-blind methods in speech enhancement with microphone arrays</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISBN
978-1-4799-9988-0
ISSN
1520-6149
e-ISSN
—
Number of pages
5
Pages from-to
4323-4327
Publisher name
Institute of Electrical and Electronics Engineers Inc.
Place of publication
Shanghai, China
Event location
Shanghai, China
Event date
Jan 1, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000388373404094