Linear acoustic echo cancellation using deep neural networks and convex reconstruction of incomplete transfer function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004534" target="_blank" >RIV/46747885:24220/17:00004534 - isvavai.cz</a>
Result on the web
<a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2017/06/ECMSM2017.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2017/06/ECMSM2017.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ECMSM.2017.7945913" target="_blank" >10.1109/ECMSM.2017.7945913</a>
Alternative languages
Result language
angličtina
Original language name
Linear acoustic echo cancellation using deep neural networks and convex reconstruction of incomplete transfer function
Original language description
Linear acoustic path estimation for acoustic echo cancellation is difficult during periods where the near-end signal (speech) is active. In this paper, we assume that the impulse response is sparse. There are many algorithms that solve the problem of estimating sparse impulse response in the time domain. In this paper, we propose algorithms working in the time-frequency domain. In our approach, it is assumed that the respective transfer function can be estimated only for those frequencies where the near-end signal is not active. First, a deep neural network trained on mixed signals is used to detect the activity of the near-end signal. In frequencies where no activity is detected, the acoustic transfer function is estimated using conventional frequency domain least squares. This results in an incomplete transfer function (ITF) estimate. The completion is done through finding the sparsest representation of the ITF in the time domain. This can be done adaptively using the soft-threshold function, which is applied in the time domain. To achieve improved accuracy, oversampling can be used.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA14-11898S" target="_blank" >GA14-11898S: Semi-blind methods in speech enhancement with microphone arrays</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics, ECMSM 2017
ISBN
978-1-5090-5582-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
Institute of Electrical and Electronics Engineers Inc.
Place of publication
Donostia, San Sebastian, Spain
Event location
Donostia, San Sebastian, Spain
Event date
Jan 1, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—