All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Audio/Video Supervised Independent Vector Analysis through multimodal pilot dependent components

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004536" target="_blank" >RIV/46747885:24220/17:00004536 - isvavai.cz</a>

  • Result on the web

    <a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2017/06/Eusipco2017b.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2017/06/Eusipco2017b.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/EUSIPCO.2017.8081388" target="_blank" >10.23919/EUSIPCO.2017.8081388</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Audio/Video Supervised Independent Vector Analysis through multimodal pilot dependent components

  • Original language description

    Independent Vector Analysis is a powerful tool for estimating the broadband acoustic transfer function between multiple sources and the microphones in the frequency domain. In this work, we consider an extended IVA model which adopts the concept of pilot dependent signals. Without imposing any constraint on the de-mixing system, pilot signals depending on the target source are injected into the model enforcing the permutation of outputs to be consistent over time. A neural network trained on acoustic data and a lip motion detection are jointly used to produce a multimodal pilot signal dependent on the target source. It is shown through experimental results that this structure allows the enhancement of a predefined target source in very difficult and ambiguous scenarios.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-00902S" target="_blank" >GA17-00902S: Advanded Joint Blind Source Separation Methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    European Signal Processing Conference 2017

  • ISBN

    978-0-9928626-7-1

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1190-1194

  • Publisher name

  • Place of publication

    Kos, Greece

  • Event location

    Kos, Greece

  • Event date

    Jan 1, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article