All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Orthogonally-Constrained Extraction of Independent Non-Gaussian Component from Non-Gaussian Background without ICA

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006128" target="_blank" >RIV/46747885:24220/18:00006128 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985556:_____/18:00492879

  • Result on the web

    <a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2018/05/LVA2018v2.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2018/05/LVA2018v2.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-93764-9_16" target="_blank" >10.1007/978-3-319-93764-9_16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Orthogonally-Constrained Extraction of Independent Non-Gaussian Component from Non-Gaussian Background without ICA

  • Original language description

    We propose a new algorithm for Independent ComponentExtraction that extracts one non-Gaussian component and is capable to exploit the non-Gaussianity of background signals without decomposing them into independent components. The algorithm is suitable for situations when the signal to be extracted is determined through initialization; it shows an extra stable convergence when the target componentis dominant. In simulations, the proposed method is compared with Natural Gradient and One-unit FastICA, and it yields improved results interms of the Signal-to-Interference ratio and the number of successful extractions.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-00902S" target="_blank" >GA17-00902S: Advanded Joint Blind Source Separation Methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 14th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICA 2018

  • ISBN

    9783319937632

  • ISSN

    03029743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    161-170

  • Publisher name

  • Place of publication

    Velká Británie

  • Event location

    Guildford, UK

  • Event date

    Jan 1, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article