Orthogonally-Constrained Extraction of Independent Non-Gaussian Component from Non-Gaussian Background without ICA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006128" target="_blank" >RIV/46747885:24220/18:00006128 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/18:00492879
Result on the web
<a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2018/05/LVA2018v2.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2018/05/LVA2018v2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-93764-9_16" target="_blank" >10.1007/978-3-319-93764-9_16</a>
Alternative languages
Result language
angličtina
Original language name
Orthogonally-Constrained Extraction of Independent Non-Gaussian Component from Non-Gaussian Background without ICA
Original language description
We propose a new algorithm for Independent ComponentExtraction that extracts one non-Gaussian component and is capable to exploit the non-Gaussianity of background signals without decomposing them into independent components. The algorithm is suitable for situations when the signal to be extracted is determined through initialization; it shows an extra stable convergence when the target componentis dominant. In simulations, the proposed method is compared with Natural Gradient and One-unit FastICA, and it yields improved results interms of the Signal-to-Interference ratio and the number of successful extractions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-00902S" target="_blank" >GA17-00902S: Advanded Joint Blind Source Separation Methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 14th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICA 2018
ISBN
9783319937632
ISSN
03029743
e-ISSN
—
Number of pages
10
Pages from-to
161-170
Publisher name
—
Place of publication
Velká Británie
Event location
Guildford, UK
Event date
Jan 1, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—