All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Audio-Visual TV Broadcast Signal Segmentation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F20%3A00007158" target="_blank" >RIV/46747885:24220/20:00007158 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-31964-9_21" target="_blank" >http://dx.doi.org/10.1007/978-3-030-31964-9_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-31964-9_21" target="_blank" >10.1007/978-3-030-31964-9_21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Audio-Visual TV Broadcast Signal Segmentation

  • Original language description

    Research in the field of audio-visual broadcast programs transcription and indexing has been solved for more than 20 years. Great progress has been made mainly in the area of broadcast transcription from audio signal. In the last 10 years, this research has become more intense, mainly due to the use of deep or convolutional neural networks and because of large IT companies (Google, Microsoft, IBM, Amazon) that can rely on a large number of custom embedded multimedia databases. Very important part of system for audio-visual broadcast signal transcription is subsystem for signal segmentation. Signal segmentation is usually solved separately for audio and visual signal. In this paper, a methodology for audio-visual broadcast signal segmentation is presented and described. The result from audio signal segmentation is used for improving of visual signal segmentation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/TH03010018" target="_blank" >TH03010018: DeepSpot - Multilingual technology for spotting and instant alerting</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. 6th International Conference on Man-Machine Interactions

  • ISBN

    978-303031963-2

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    221-228

  • Publisher name

    Springer

  • Place of publication

    Germany

  • Event location

    Cracow, Poland

  • Event date

    Jan 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article