All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Blind Extraction of Moving Sources via Independent Component and Vector Analysis: Examples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F21%3A00008778" target="_blank" >RIV/46747885:24220/21:00008778 - isvavai.cz</a>

  • Result on the web

    <a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2021/03/ICASSP_2021___Examples_of_Blind_Source_Extraction_of_Moving_Sources.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2021/03/ICASSP_2021___Examples_of_Blind_Source_Extraction_of_Moving_Sources.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP39728.2021.9413422" target="_blank" >10.1109/ICASSP39728.2021.9413422</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Blind Extraction of Moving Sources via Independent Component and Vector Analysis: Examples

  • Original language description

    This paper is devoted to the recently proposed mixing model with constant separating vector (CSV) for Blind Source Extraction of moving sources using the FastDIVA algorithm, which is an extension of the famous FastICA and FastIVA for static mixtures. The benefits due to the CSV model and FastDIVA are demonstrated in three new applications. First, the extraction of a moving speaker in a noisy reverberant environment using a dense array of 48 MEMS microphones is considered. Second, a case study on the blind extraction of moving brain activity from visually evoked potentials in electroencephalogram is reported. Third, a simulation of block-by-block online extraction of a moving source is demonstrated. In these examples, the CSV and FastDIVA show their new potential and good performance in handling the blind moving source extraction problem.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA20-17720S" target="_blank" >GA20-17720S: Advanced Mixing Models for Blind Source Extraction</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

  • ISBN

  • ISSN

    1520-6149

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    3725-3729

  • Publisher name

    IEEE

  • Place of publication

    USA

  • Event location

    Toronto, Canada

  • Event date

    Jan 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000704288403196